منابع مشابه
Almost - Interpolatory Chebyshev Quadrature
The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight fu...
متن کاملOn computing rational Gauss-Chebyshev quadrature formulas
We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
A generalized Birkhoff-Young-Chebyshev quadrature formula for analytic functions
A generalized N-point Birkhoff–Young quadrature of interpolatory type, with the Chebyshev weight, for numerical integration of analytic functions is considered. The nodes of such a quadrature are characterized by an orthogonality relation. Some special cases of this quadrature formula are derived. 2011 Elsevier Inc. All rights reserved.
متن کاملGauss-chebyshev Quadrature Formulae for Strongly Singular Integrals
This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1969
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1969-0242367-4